1. Asignatura	Paquetes de simulación molecular					
Carácter:	obligatoria		ECTS	5	Temporal:	C2
Lenguas impartición		Castellano				

2. Resultados de aprendizaje:

- 1. Entender los fundamentos de la mecánica clásica de sistemas conservativos en su formulación lagrangiana y hamiltoniana.
- 2. Conocer distintos métodos de resolución numérica de las ecuaciones de evolución de la mecánica clásica.
- 3. Entender la conexión entre la descripción microscópica y macroscópica de un sistema molecular.
- 4. Determinar las propiedades de equilibrio de sistemas moleculares en distintos colectivos.
- 5. Determinar las propiedades de transporte en sistemas moleculares.
- 6. Caracterizar computacionalmente el comportamiento de sistemas moleculares fuera del equilibrio.
- 7. Profundizar en las habilidades de programación necesarias para implementar y ejecutar códigos de Dinámica Molecular.
- 8. Saber identificar la metodología más apropiada para la obtención de cada propiedad de interés de un sistema molecular.

3. Contenidos

3.1. Descriptores

Gromacs. Termostatos en Dinámica Molecular. Barostatos en Dinámica Molecular. Sistemas de ficheros de Gromacs. Determinación de propiedades termodinámicas, estructurales y dinámicas con Gromacs. Cálculo de equilibrios de fase con Gromacs.

3.2. Temario

Tema 1. Introducción a los paquetes de simulación molecular. Gromacs. LAMMPS, DL_POLY. NAMD. HooMD-Blue.

Tema 2. Termostatos y baróstatos en Dinámica Molecular. Formulación lagrangiana de la Dinámica Molecular. Concepto de termostato. Termostato de Berendsen. Termostato de Nosé-Hoover. Termostato de reescalado estocástico. Concepto de barostato. Barostato de Berendsen. Barostato de Parrinello-Rahman.

Tema 3. Dinámica Molecular con GROMACS I. Introducción. Manejo de ficheros de entrada y salida. Visualización de resultados. Aspectos prácticos de la Dinámica Molecular en GROMCAS. Elección de los parámetros de simulación: paso de tiempo, truncamiento del potencial, elección del campo de fuerzas, dimensiones del sistema simulado y geometría de las condiciones de contorno periódicas.

Tema 4. Dinámica Molecular con GROMACS II. Termostatos y barostatos. Análisis de trayectorias. Cálculo de propiedades termodinámicas y estructurales. Cálculo de propiedades dinámicas. Funciones de autocorrelation. Propiedades de transporte. Aplicaciones a sólidos y líquidos.

Tema 4. Aplicaciones con GROMACS. Determinación del equilibrio de fases. Métodos de coexistencia directa. Determinación de la presión de vapor de un líquido. Cálculo de la tensión interfacial. Coexistencia directa sólido-líquido.

3.3. Bibliografía

- 1. M. Allen and D. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.
- 2. D. Frenkel and B. Smit, *Understanding Molecular Simulation*, 2nd Edition, Academic Press, San Diego, 2002.
- 3. J. M. Haile, Molecular Dynamics simulations, John Wiley and sons, 1997.
- 4. A. R. Leach, Molecular modelling. Principles and applications, Prentice Hall, 2001.
- 5. T. Schlick, Molecular modelling and simulation (Springer, 2006).

4. Observaciones:

5. Competencias: Dominar distintos paquetes informáticos disponibles en la literatura especializada y discriminar cuáles son los óptimos para realizar simulaciones moleculares mediante diferentes técnicas.

5.1. Básicas y generales	Generales	CB6, CB7, CB8, CB9, CB10
generales	Básicas	CG1, CG2, CG3, CG4
5.2. Transversales		CT2, CT3, CT4, CT5, CT6
5.3. Específicas		CE1, CE2, CE3, CE6, CE7, CE8, CE9, CE10, CE11

6. Actividades formativas

Actividades formativas	Horas	Presencialidad (%)	
AF1-Actividades dirigidas (clases expositivas,	20	100	
clases de problemas y talleres de programación)			
AF2. Actividades supervisadas (tutorías	60	50	
individuales y colectivas y trabajos tutelados)			

AF3. Actividades autónomas (realización de	45	0		
problemas, programas y estudio personal)				
Total	125	-		
7. Metodologías docentes				

Tipo de metodología Denominación

- MD1. Clases expositivas mediante Adobe Connect.
- MD4. Tutorías individuales y/o colectivas programadas.
- MD5. Trabajos tutelados (proyectos, programas, etc.).

MD8. Estudio personal (lectura de bibliografía recomendada, realización de cuestionarios, tests y exámenes preparatorios vía el *Moodle* del Campus Virtual, uso y estudio de códigos computacionales de la biblioteca de la Red Española de Simulación Molecular, etc.).

8. Sistemas de evaluación	Pond. Mínima	Pond. Máxima
Participación activa en el desarrollo de la materia mediante teledocencia (<i>Adobe Connect</i>) y Campus Virtual (<i>Moodle</i>) (uso del chat, foros, e-mail, etc.)	0	0.2
Resolución de cuestionarios y tests de evaluación a través del Campus Virtual (<i>Moodle</i>)	0.2	0.4
Elaboración y/o presentación oral de trabajos de la asignatura	0.5	0.7